ООО опытно-конструкторское бюро « СОЛИС »

БЛОК КОНТРОЛЯ ПАРАМЕТРОВ ВОДОПОДГОТОВКИ СЛ21

ТУ 4217 – 005 – 59986255 - 2006

ТЕХНИЧЕСКОЕ ОПИСАНИЕ ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ПАСПОРТ

г. Владимир

Содержание

1.	НАЗНАЧЕНИЕ	. 1		
2.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	. 3		
3.	МАРКИРОВКА И КОМПЛЕКТНОСТЬ ПОСТАВКИ	.4		
4.	УСТРОЙСТВО И ПРИНЦИП РАБОТЫ	. 5		
5.	ПОДГОТОВКА К РАБОТЕ И РАБОТА	. 8		
6.	ПОРЯДОК ВВОДА В ЭКСПЛУАТАЦИЮ	19		
7.	УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ	20		
8.	ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	20		
9.	ХРАНЕНИЕ И ТРАСПОРТИРОВАНИЕ	21		
10.	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	22		
При	иложение 1	23		
«Га	баритные и установочные размеры Блока СЛ21»	23		
При	иложение 2а	24		
«Га тем	баритные и присоединительные размеры датчика электропроводности и пературы ДЭТ9-1Т»	24		
При	ложение 2б	25		
«Га тем	баритные и присоединительные размеры датчика электропроводности и пературы ДЭТ9-10Т»	25		
Приложение 2в				
«Га тем	баритные и присоединительные размеры датчика электропроводности и пературы ДЭТ9-100Т»	26		
Приложение 3				
«Cx	ема внешних соединений Блока СЛ21»	27		
При	ложение 4	28		
«Бл	ок-схема Блока СЛ21»	28		
При	ложение 5	29		
«До	«Допустимые положения датчиков ДЭТ9 на трубопроводе»			

1. НАЗНАЧЕНИЕ

1.1 Блок контроля параметров водоподготовки СЛ21 ТУ 4217-005-59986255-2006 (далее по тексту – Блок) предназначен для визуального величин одной непрерывного контроля или **ДВVX** электропроводностей (УЭП) и температур жидкостей в промышленных и лабораторных водоподготовки, **VCTAHOBKAX** передачи значений контролируемых параметров управляющим и регистрирующим устройствам по гальванически развязанному интерфейсу RS-485 (протокол MODBUS RTU), а также - для управления автоматикой установок с помощью гальванически развязанных активных токовых выходов 4-20мА и реле автоматики.

1.2 Блок представляет собой устройство цифровой обработки параметрических сигналов от датчиков электропроводности и температуры, встроенное в пластмассовый корпус щитового исполнения и содержащее схемы формирования сигналов управления реле автоматики и аналоговых выходных сигналов 4-20мА, схему интерфейса RS-485, графический индикатор для отображения величин параметров, коэффициентов, уставок и размерностей.

1.3 Блок рассчитан на работу с датчиками электропроводности и температуры ДЭТ9, входящими в комплект поставки и являющимися неотъемлемой и взаимно не заменяемой (без дополнительной калибровки) частью Блока.

1.4 Токовые выходы Блока и реле автоматики независимо друг от друга могут быть подключены (привязаны) к любому контролируемому параметру с возможностью программного задания для каждого из них граничных (пороговых) значений величин контролируемых параметров.

1.5 Блок выполнен в общепромышленном исполнении и должен устанавливаться вне взрывоопасных зон.

1.6 Сертификаты:

Сертификат соответствия № РОСС RU.ВЯ01.Н00184

Экспертное заключение регистрационный номер 858 от 05.03.2013г.

1.7 В зависимости от комплектования Блоков СЛ21 датчиками электропроводности и температуры, модулями токовых выходов и интерфейса полное их обозначение при заказе и исполнении должно быть следующим:

Блок контроля параметров водоподготовки СЛ21 – XYZ – W

Где: **W** - обозначение верхней границы диапазона контролируемой электропроводности и типа примененных датчиков ДЭТ9:

1Т – 1'000 мкСм/см – ДЭТ9-1Т

10Т – 10'000 мкСм/см – ДЭТ9-10Т

100Т – 100'000 мкСм/см – ДЭТ9-100Т

- **Х** количество каналов контроля электропроводности и температуры и датчиков ДЭТ9;
- Y количество токовых выходов 4-20мА;
- **Z** количество интерфейсов RS-485

Возможные значения **XYZ** и соответствующая им комплектация Блоков СЛ21 приведены в Таблице 1.

Таблица 1

	Количество комплектующих модулей и устройств			ОЙСТВ
XYZ	Каналы контроля электропроводности и температуры, датчики ДЭТ9	Токовые выходы 4- 20мА	Интерфейс RS-485	Реле автоматики
100	1	0	0	2
101	1	0	1	2
110	1	1	0	2
111	1	1	1	2
120	1	2	0	2
121	1	2	1	2
200	2	0	0	2
201	2	0	1	2
210	2	1	0	2
211	2	1	1	2
220	2	2	0	2
221	2	2	1	2

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Основные технические характеристики Блока следующие:

диапазон каналов контроля электропр	оводности СЛ21-1Т СЛ21-10Т СЛ21-100Т	от 0,01 до 1000 мкС/см от 0,1 до 10000 мкС/см от 1 до 100000 мкС/см
основная приведённая погрешность ка контроля электропроводности	нала	±2%
максимальное количество каналов кон электропроводности	троля	2
размерности величин электропроводн	ости	мкС/см, мГ/л, Мом/см
диапазон контролируемых температур)	от 5 до 95 °C
диапазон установки температурных коэффициентов электропроводности		от 0 до 9,9 %/°С
скорость интерфейса RS-485		9600 бод,19200 бод
протокол обмена		MODBUS RTU
количество активных токовых выходов	4-20мА	0, 1, 2
количество реле автоматики		2
максимальная нагрузочная способност контактов реле автоматики	ъ выходных	250B, 3A
напряжение питания		~220±25В, 50Гц
потребляемая мощность, не более		5 Вт
габаритные размеры		144х108х38 мм
присоединительные размеры датчико ДЭТ9	В	G1/2-В, L=20мм
масса Блока с датчиками, не более		0,9 кг

2.2 Блок может работать в следующих режимах:

- «Рабочий»
- «Установки пользователя»
- «Коррекция»
- «Калибровка»
- «Заводские установки»

В каждом режиме доступно соответствующее количество окон индикации параметров и процедур.

2.3 Каждый канал контроля электропроводности имеет пять внутренних поддиапазонов (ПД):

C.u.lou	№ ПД			
MKCM/CM	СЛ21-1Т	СЛ21-10Т	СЛ21-100Т	
0,010,1	1	-	-	
0,101,0	2	1	-	
110	3	2	1	
10100	4	3	2	
1001 000	5	4	3	
1 00010 000	-	5	4	
10 000100 000	-	-	5	

Поддиапазоны в процессе работы Блока переключаются автоматически.

2.4 Управление работой Блока, выбор режимов, окон индикации, параметров, уставок, их коррекция, запуск автоматических процедур осуществляются с помощью пяти кнопок управления.

2.5 Срок службы Блока - 10 лет.

2.6 Присоединительные и установочные размеры Блока и датчиков ДЭТ9 указаны в приложении 1 и 2.

3. МАРКИРОВКА И КОМПЛЕКТНОСТЬ ПОСТАВКИ

3.1 На задней крышке Блока указываются:

- название предприятия изготовителя,
- название Блока,
- серийный номер Блока,
- дата выпуска,
- номера датчиков ДЭТ9,
- обозначение контактов разъёмных соединителей.

3.2 В комплект поставки входят:

• Блок СЛ21	1 шт.
• Датчик ДЭТ9	1 или 2 шт.
• Кабель соединительный к датчику (2м)	1 или 2 шт.
• Модуль токового выхода 420мА	0, 1 или 2 шт.
• Модуль интерфейса RS-485	0 или 1 шт.
• Боковое крепление	2 шт.
• Инструкция по эксплуатации, паспорт	1 шт.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

4.1 Блок конструктивно выполнен в пластмассовом корпусе щитового исполнения. Внутри корпуса закреплена плата электроники. Соединение блока с источником питания и внешними устройствами осуществляется через разъёмные клеммные соединители. Расположение разъёмов и схема внешних соединений Блока показаны в приложении 3.

Неотъемлемой Блока частью являются цилиндрические двухэлектродных контактные датчики ДЭТ9 с погружной частью из стали 12x18н10т, являющиеся кондуктометрическими ячейками со встроенными датчиками температуры соединяемые С Блоком через разъёмы И экранированными кабелями.

4.2 Блок-схема СЛ21 представлена в приложении 4. Сигналы от датчиков электропроводности И температуры преобразуются соответствующими согласующими устройствами, имеющими программноаппаратные регуляторы коэффициентов преобразования, и поступают на входы контроллера, который преобразует входные сигналы от датчиков в числовую информацию и, учитывая ранее установленные программные уставки и точки коррекции, высчитывает значения параметров, отображает их величины на дисплее и формирует адекватные значения токовых выходов и состояния реле.

4.3 Все программные установки в Блоке осуществляются с помощью кнопок управления в режиме «УСТАНОВКИ ПОЛЬЗОВАТЕЛЯ» и «КОРРЕКЦИЯ».

4.4 Процедуры начальных установок, калибровки и поверки Блока осуществляются с помощью кнопок управления в режиме «КАЛИБРОВКА» и «ЗАВОДСКИЕ УСТАНОВКИ».

4.5 Расположение на передней панели Блока органов управления и индикации показано на рис.1.

Рис.1

Где:

- графический индикатор (дисплей), отображающий величины контролируемых параметров, их размерности, уставки и флаги в соответствующих окнах индикации;

вкл.

- единичный индикатор включения/выключения напряжения питания блока;

 кнопка выбора предыдущего параметра в текущем окне индикации в режиме «Установки пользователя» и увеличения величины параметра в режиме «Коррекция»;

 кнопка выбора следующего параметра в текущем окне индикации в режиме «Установки пользователя» и уменьшения величины параметра в режиме «Коррекция»;

 кнопка выбора следующего окна индикации в режиме «Установки пользователя» и выбора корректируемого разряда параметра в режиме «Коррекция»;

- кнопка выбора предыдущего окна индикации в режиме «Установки пользователя» и выбора корректируемого разряда параметра в режиме «Коррекция»;

 - кнопка выбора режима «Коррекция» и запуска автоматических процедур;

- кнопка включения напряжения питания;

4.6 Основной режим работы Блока – **«Рабочий»**, устанавливается сразу после включения питания Блока, о чём свидетельствует синий цвет RGB-индикатора. В режиме **«Рабочий»** доступно одно окно индикации, в котором отображаются текущие значения основных параметров – электропроводностей и температур. В этом режиме Блок формирует выходные токовые сигналы 4-20мА, управляет состоянием реле автоматики и интерфейсом согласно ранее заданным и сохранённым в энергонезависимой памяти Блока установкам..

4.7 В режимах **«Установки пользователя»** и **«Калибровка»** данные для отображения на дисплее сгруппированы по назначению в соответствующих окнах индикации. Цвет RGB-индикатора **О** – зелёный.

Переход от текущего окна индикации к последующему происходит при

нажатии на кнопку 😎. Переход от текущего окна индикации к

предыдущему происходит при нажатии на кнопку

Выбор параметров

внутри окна производится нажатиями на кнопки , что визуально подтверждается миганием мнемонического обозначения выбранного параметра или числового значения его величины.

4.8 Режим **«Коррекция»** позволяет производить необходимые изменения выбранного параметра с последующим сохранением их значений в памяти Блока.

Режим «Коррекция» включается при работе Блока в режимах «Установки пользователя» при выбранном для коррекции (мигающем)

параметре после нажатия на кнопку

На время работы Блока в режиме «Коррекция» цвет RGB-индикатора О – красный.

Изменение величины корректируемого параметра в режиме «Коррекция» осуществляется поразрядно. Значение выбранного

(мигающего) разряда увеличивается при нажатиях на кнопку

уменьшается при нажатиях на кнопку . Смена корректируемого разряда осуществляется от старших разрядов к младшим (слева-направо) при

нажатиях на кнопку и от младших разрядов к старшим (справа-

налево) при нажатиях на кнопку Изменение значений флагов и размерностей в режиме «Коррекция»

осуществляется нажатиями на кнопки

Выход из режима «Коррекция» осуществляется нажатием на кнопку

. Скорректированное значение параметра при этом сохраняется в

7

энергонезависимой памяти Блока, после чего цвет RGB-индикатора О становится зелёным.

4.9 Запуск автоматических процедур осуществляется нажатием на кнопку с включением красного цвета RGB-индикатора **О**. После завершения процедуры цвет RGB-индикатора **О** становится зелёным.

4.10 Нажатие на кнопки подтверждается коротким звуковым сигналом зуммера, а окончание автоматических процедур – длинным и неоднократным сигналом.

4.11 Режимы «Заводские установки» и «Калибровка» используются при производстве Блока на предприятии-изготовителе.

5. ПОДГОТОВКА К РАБОТЕ И РАБОТА

5.1 Установить Блок в отведённом для него месте и тщательно закрепить, обеспечив при необходимости свободный доступ к разъёмам питания и внешних устройств.

5.2 Установить на трубопроводе или ёмкости датчики электропроводности и температуры ДЭТ9. Допустимые положения датчика на трубопроводе показаны в приложении 5.

5.3 Подключить к Блоку кабели внешних устройств и датчиков электропроводности.

5.4 Подключить к Блоку кабель от источника питания. При этом кабель и вся установка, на которой закрепляется Блок, должны быть предварительно обесточены.

5.5 Подать на Блок напряжение питания.

5.6 Нажатием на кнопку 🛄 включить Блок, при этом на передней

панели корпуса Блока должен включиться единичный индикатор **O**, а на дисплее появится информационное окно индикации:

ВНИМАНИЕ! Окно индикации и числовые значения параметров здесь и далее показаны условно.

----(ООООКБ"Солис")----СЛ21-221-10Т №0001 дат1№0002 дат2№0003 изг. 04 / 05/ 2018 г. Где содержание строк индикации следующее:

- 1) Название предприятия-изготовителя;
- 2) Название Блока и его заводской номер;
- Номера датчиков 1-го и 2-го каналов контроля электропроводности и температуры;
- 4) Дата изготовления Блока.

По окончании индикации информационного окна Блок перейдёт в режим **«Рабочий»**, а цвет RGB-индикатора **О** станет синим.

5.7 При необходимости установки или корректировки рабочих параметров необходимо перевести Блок в режим **«Установки пользователя»**.

Для этого непосредственно перед включением питания Блока нажать

на кнопку и, удерживая её нажатой, кнопкой и включить Блок. После появления на дисплее информационного окна

> Установ. пользователя СЛ21-221-10Т №0001 дат1№0002 дат2№0003 изг.04 /05/2018 г.

кнопку

отпустить.

По окончании индикации информационного окна Блок перейдёт в режим **«Установки пользователя»**, а цвет RGB-индикатора • станет зелёным.

5.8 Информационное окно на дисплее автоматически заменяется на основное окно индикации режимов «Рабочий» и «Установки пользователя».

Основное окно индикации для Блоков СЛ21-1**YZ-W** имеет следующий вид:

Где содержание строк индикации следующее:

- 1) Величина и размерность электропроводности в 1-ом канале контроля и флаг привязки или флаг включения реле1 автоматики;
- Величина и размерность температуры в 1-ом канале контроля и флаг привязки или флаг включения реле2 автоматики;

Основное окно индикации для Блоков СЛ21-2**YZ-W** имеет следующий вид:

Где содержание строк индикации следующее:

- 1) Величина и размерность электропроводности в 1-ом канале контроля и флаг привязки или флаг включения реле1 автоматики;
- 2) Величина и размерность электропроводности во 2-ом канале контроля и флаг привязки или флаг включения реле2 автоматики.

5.9 В режиме «Установки пользователя» доступны следующие окна индикации:

ВНИМАНИЕ! Окна индикации параметров, обрабатываемых модулями, отсутствующими в комплектации конкретного Блока, будут этим Блоком автоматически пропущены.

- Основное окно индикации
- «Коррекция X₁, t₁»
- «Коррекция X₂, t₂»
- «Реле1»
- «Реле2»
- «Токовый выход 1»
- «Токовый выход 2»
- «МВ интерфейс»
- «Установки пользователя ВОССТАНОВИТЬ»
- «Заводские установки ВОССТАНОВИТЬ»
- «Установки пользователя СОХРАНИТЬ»

Вид и содержание окон индикации приведены далее.

5.10 Окно индикации «Коррекция X₁, t₁» имеет следующий вид:

В этом окне доступны для коррекции следующие параметры:

• Температурный коэффициент электропроводности (Kxt) для 1-го канала контроля

- Размерность электропроводности X₁, отображаемой в основном окне индикации
- Величина электропроводности Х1
- Величина температуры t₁.

5.10.1 Установка величины параметра Кхt возможна в пределах от 0 до 9,9 %/ °C.

5.10.2 Размерность электропроводности X₁, отображаемой в основном окне индикации может принимать следующие значения:

- мкС/см
- мг/л
- Мом/см

5.10.3 Корректировка величины электропроводности X₁ в точке контроля действует только в пределах текущего внутреннего поддиапазона. Пять внутренних поддиапазонов Блока переключаются автоматически. Соответствующую корректировку X₁ можно произвести в каждом поддиапазоне.

Наличие корректировки величины X1 обозначается флагом «!» в конце строки индикации X1.

Убрать корректировку величины X₁ в точке контроля можно, установив X₁=0000.

5.10.4 Корректировку величины температуры t₁ можно производить только при выдержке датчика 1-го канала контроля в жидкости постоянной температуры не менее 2-х минут.

5.11 Окно индикации «Коррекция X₂, t₂» имеет следующий вид:

В этом окне доступны для коррекции следующие параметры:

- Температурный коэффициент электропроводности (Kxt) для 2-го канала контроля
- Размерность электропроводности X₂, отображаемой в основном окне индикации
- Величина электропроводности Х₂
- Величина температуры t₂.

5.11.1 Установка величины параметра Kxt возможна в пределах от 0 до 9,9 %/ °C.

5.11.2 Размерность электропроводности X₂, отображаемой в основном окне индикации может принимать следующие значения:

- мкС/см
- мг/л
- Мом/см

5.11.3 Корректировка величины электропроводности X₂ в точке контроля действует только в пределах текущего внутреннего поддиапазона. Пять внутренних поддиапазонов Блока переключаются автоматически. Соответствующую корректировку X₂ можно произвести в каждом поддиапазоне.

Наличие корректировки величины X₂ обозначается флагом «!» в конце строки индикации X₂.

Убрать корректировку величины X₂ в точке контроля можно, установив X₂=0000.

5.11.4 Корректировку величины температуры t₂ можно производить только при выдержке датчика 2-го канала контроля в жидкости постоянной температуры не менее 2-х минут.

5.12 Окно индикации «Реле1» имеет следующий вид:

В этом окне доступны для коррекции следующие параметры:

- «Привязка» флаг, указывающий к какому из параметров привязана работа Реле1;
- «Включить» величина привязанного параметра, при достижении которой Реле1 должно включиться;
- «Выключить» величина привязанного параметра, при достижении которой Реле1 должно выключиться.

5.12.1	Флаг	«Привязка»	может	принимать	следующие	значения:
--------	------	------------	-------	-----------	-----------	-----------

	Реле1 выключено
Х1 мкС/см	текущее значение электропроводности X ₁ выраженное в мкС/см
Х ₁ мг/л	текущее значение электропроводности Х ₁ выраженное в мг/л
Х1 Мом/см	текущее значение электропроводности X ₁ выраженное в Мом/см
Х2 мкС/см	текущее значение электропроводности X ₂ выраженное в мкС/см

Х2 мг/л	текущее значение электропроводности Х ₂ выраженное в мг/л
Х2 Мом/см	текущее значение электропроводности X ₂ выраженное в Мом/см
t₁ ºC	текущее значение температуры t ₁ в °С
t₂ °C	текущее значение температуры t2 в °С

5.12.2 Параметры **«Включить»** и **«Выключить»** определяют характер работы Реле1 при изменениях величины привязанного параметра.

Если значение **«Включить»** больше значения **«Выключить»**, то Реле1 будет включаться при превышении величиной привязанного параметра значения **«Включить»**, а выключаться при снижении ниже значения **«Выключить»** так, как показано на рис.2.

Рис.2

Если значение **«Включить»** меньше значения **«Выключить»**, то Реле1 будет выключаться при превышении величиной привязанного параметра значения **«Выключить»**, а включаться при снижении ниже значения **«Включить»** так, как показано на рис.3.

5.12.3 При наличии привязки состояние Реле1 выключено/включено отображается соответствующими флагами (1) и **1** в основном окне индикации.

5.13 Окно индикации «Реле2» имеет следующий вид:

(P e)	пе2)
Привязка	
Включить	00050000
Выключить	00010000

Все параметры окна **«Реле2»** и их свойства полностью соответствуют аналогичным параметрам окна **«Реле1»** (см. п.5.12, п.5.12.1, п.5.12.2), но применительно к Реле2.

5.13.1 При наличии привязки состояние Реле2 выключено/включено отображается соответствующими флагами (2) и **2** в основном окне индикации.

5.14 Окно индикации «Токовый выход1» имеет следующий вид:

В этом окне доступны для коррекции следующие параметры:

- «Привязка» флаг указывающий к какому из параметров привязана работа Токового выхода1
- «4мА» величина привязанного параметра, при достижении которой ток Токового выхода1 должен составить 4мА
- «20мА» величина привязанного параметра, при достижении которой ток Токового выхода1 должен составить 20мА

5.14.1 Флаг «Привязка» окна индикации «Токовый выход1» по назначению и содержанию полностью аналогичен флагу «Привязка» окна индикации «Реле1» (см. п.5.12.1).

5.14.2 Параметры **«4мА»** и **«20мА»** определяют характер работы Токового выхода1 при изменениях величины привязанного параметра.

Если значение **«20мА»** больше значения **«4мА»**, то выходной ток Токового выхода1 будет увеличиваться до 20мА при увеличении величины привязанного параметра до значения **«20мА»** и уменьшаться до 4мА при уменьшении до значения **«4мА»** так, как показано на рис.4.

Рис.4

Если значение **«20мА»** меньше значения **«4мА»**, то выходной ток Токового выхода1 будет увеличиваться до 20мА при уменьшении величины привязанного параметра до значения **«20мА»** и уменьшаться до 4мА при увеличении до значения **«4мА»** так, как показано на рис.5.

5.15 Окно индикации «Токовый выход2» имеет следующий вид:

(Токовый выход2)
Привязка	
4 мА 0000000	
20мА 00050000	

Все параметры окна **«Токовый выход2»** и их свойства полностью соответствуют аналогичным параметрам окна **«Токовый выход1»** (см. п.5.14, п.5.14.1, п.5.14.2), но применительно к Токовому выходу2.

5.16 Окно индикации «МВ интерфейс» имеет следующий вид:

(МВ интеро	фейс)(Вкл)
Адрес	005
Скорость	19200 бод
Паритет	чётный

В этом окне доступны для коррекции следующие параметры:

- «Вкл» флаг включения/выключения интерфейса RS-485;
- «Адрес» число идентифицирующее Блок в качестве подчинённого устройства в протоколе MODBUS;
- «Скорость» скорость работы интерфейса RS-485;

• «Паритет» - способ контроля 9-го бита передаваемых данных в интерфейсе RS-485.

5.16.1 Флаг **«Вкл»** - указывает на физическое подключение интерфейса RS485 к источнику питания и линиям связи. Выбранный флаг

«Вкл» при нажатии на кнопку *заменяется флагом «Выкл»*, что свидетельствует об физическом отключении интерфейса.

5.16.2 Параметр **«Адрес»** - идентификатор Блока в протоколе MODBUS RTU, представляющий число от 1 до 247.

5.16.3 При обмене информацией по последовательному интерфейсу RS-485 Блок использует стандартную функцию 0x03 протокола MODBUS – «Read Holding Registers» (Чтение нескольких регистров хранения).

Номера (адреса) доступных для чтения регистров и их информационное содержание:

01 или 40001 – младшая часть величины электропроводности Х1

02 или 40002 – старшая часть величины электропроводности Х1

03 или 40003 – величина температуры t1

04 или 40004 – младшая часть величины электропроводности Х2

05 или 40005 – старшая часть величины электропроводности Х2

06 (или 40006) – величина температуры t2

Формат представления величин электропроводностей в регистрах 01,02 и регистрах 03,04:

для СЛ21-1Т XXXX,XXXX мкСм/см x 10000 для СЛ21-10Т XXXXX,XXX мкСм/см x 1000 для СЛ21-100Т XXXXXX,XX мкСм/см x 100

Формат представления величин температур в регистре 03 и регистре 06:

XXX,X °C x 10

5.16.4 Если при эксплуатации Блок подключается к концу физической линии интерфейса RS- 485, джампер терминатора (см. Приложение 4) должен быть замкнут. При этом параллельно линии подключается согласующий резистор (терминатор) 120 Ом.

Если Блок не является конечным устройством в линии, джампер терминатора должен быть разомкнут.

5.16.5 Параметр «Скорость» может принимать значения:

- 19200 бод
- 9600 бод.

5.16.6 Флаг «Паритет» может принимать значения:

- «чётный»
- «нечётный»
- «стоп-бит2»

5.17 Окно индикации «Установки пользователя ВОССТАНОВИТЬ» имеет следующий вид:

Это окно предназначено для осуществления процедуры восстановления в качестве рабочих последних сохранённых ранее установок пользователя.

Процедура восстановления запускается нажатием на кнопку при этом, цвет RGB-индикатора 🔍 становится красным, полоса загрузки и загрузки процентах численное значение начинают увеличиваться, в отображая процесс восстановления установок пользователя. При достижении 100%-ой загрузки трижды воспроизводится звуковой сигнал зуммера, цвет RGB-индикатора становится \bigcirc зелёным, изображение на дисплее возвращается к начальному виду.

5.18 Окно индикации **«Заводские установки ВОССТАНОВИТЬ»** имеет следующий вид:

Это окно предназначено для осуществления процедуры восстановления в качестве рабочих заводских установок.

Процедура восстановления запускается нажатием на кнопку при этом, цвет RGB-индикатора 🔍 становится красным, полоса загрузки и значение загрузки процентах начинают увеличиваться, численное в отображая процесс восстановления заводских установок. При достижении 100%-ой загрузки трижды воспроизводится звуковой сигнал зуммера, цвет RGB-индикатора становится зелёным, изображение дисплее на возвращается к начальному виду.

5.19 Окно индикации «Установки пользователя СОХРАНИТЬ» имеет следующий вид:

Это окно предназначено для осуществления процедуры сохранения в памяти Блока текущих рабочих установок пользователя.

Процедура сохранения запускается нажатием на кнопку этом цвет RGB-индикатора • становится красным, полоса загрузки и численное процентах начинают увеличиваться, значение загрузки в отображая процесс сохранения установок пользователя. При достижении 100%-ой загрузки трижды воспроизводится звуковой сигнал зуммера, цвет RGB-индикатора $oldsymbol{O}$ становится зелёным. изображение на дисплее возвращается к начальному виду.

6. ПОРЯДОК ВВОДА В ЭКСПЛУАТАЦИЮ

6.1 Перед началом работы необходимо надёжно закрепить Блок и датчики в установленных для них местах электро-шкафа и трубопровода соответственно, обеспечив при необходимости свободный доступ к соединительным разъёмам.

6.2 При установке Блока исключить нажатия на переднюю панель в области расположения графического индикатора для предотвращения его поломки.

6.3 Проверить надёжность подключения кабелей. Все проверки, подключения и отключения кабелей производить только при полностью обесточенных Блоке и установке.

6.4 Включить питание Блока.

6.5 Проверить установленные параметры и флаги, и в случае необходимости произвести их корректировку.

С предприятия - изготовителя Блоки поступают с запрограммированной конфигурацией, соответствующей требованиям заказчика.

7. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

7.1. Предприятие-изготовитель гарантирует нормальную работу Блока при соблюдении следующих условий эксплуатации:

- монтаж Блока выполнен согласно п.6;
- напряжение питания не превышает ~250в;

• температура воздуха в помещении установки Блока не превышает +40°С при относительной влажности не более 80%;

• сварочные и монтажные работы на обслуживаемой Блоком

установке производились при снятых с установки Блоке и датчике;

• отсутствовало короткое замыкание в кабелях датчиков при включённом Блоке;

• Блок не подвергался сильным механическим воздействиям и не был повреждён.

7.2. Наружные поверхности Блока необходимо содержать в чистоте. При загрязнении передней панели Блока её следует протереть сухой полотняной салфеткой.

7.3. Периодически производить внешний осмотр Блока, проверяя при этом надёжность крепления Блока и подключённых к нему кабелей.

8. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

8.1 Ремонт Блока производиться только предприятиемизготовителем. Доставка Блока на предприятие-изготовителя для ремонта осуществляется потребителем.

8.2 Профилактическое обслуживание, подсоединение кабелей, замену предохранителей и датчиков производить только при полностью обесточенных Блоке и установке.

8.3 Некоторые возможные неисправности Блока и способы их устранения приведены в таблице 2.

Неисправность	Вероятная причина	Метод устранения
Отображаемая	Случайно или неверно произведена процедура калибровки параметра	Произвести процедуру восстановления установок пользователя или заводских установок см. п 5.17, п.5.18
контролируемого параметра явно отличается от реальной или нестабильна	Электроды датчика загрязнены, или в результате его неправильной установки нормальной работе мешают воздушные пузыри	Прочистить электроды датчика. Проверить правильность установки Блока согласно данным приложения 5.
	Перепутаны провода от кабеля датчика на разъёме Блока	Проверить правильность подсоединения датчика
Блок не включается	Отсутствует питающее напряжение или сработал предохранитель	Проверить наличие и величину питающего напряжения. Подождать 10минут до восстановления работоспособности предохранителя
	питания	проверить целостность кабеля и его установку
Отсутствуют или не изменяются показания индикатора	Сбой в работе контроллера Блока	Выключить Блок и через несколько секунд обратно включить

9. ХРАНЕНИЕ И ТРАСПОРТИРОВАНИЕ

9.1 Блок должен храниться в помещении при температуре воздуха не менее -10°C и не более +45°C при относительной влажности не более 80%.

9.2 Транспортировка Блока должна осуществляться закрытыми видами транспорта в мягкой упаковке, исключающей падение и механическое повреждение Блока.

10. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

10.1 Предприятие - изготовитель гарантирует работу Блока в соответствии с приведёнными в настоящем документе требованиями при соблюдении потребителем условий хранения, монтажа и эксплуатации.

10.2 Ремонт Блока производиться только предприятиемизготовителем. Доставка Блока на предприятие-изготовитель для ремонта осуществляется потребителем.

10.3 Гарантийный срок эксплуатации составляет 12 месяцев с момента передачи Блока потребителю или с момента изготовления.

10.4 Блок прошёл проверку на соответствие приведённым требованиям на предприятии-изготовителе и признан годным к эксплуатации.

Блок контроля параметров водоподготовки СЛ21Т		
Заводской №		
Дата изготовления		
Х₁, датчик №		
Х₂, датчик №		
Предприятие-изготовитель	ООО ОКБ «Солис»	
Контактная информация	РФ,600009, г. Владимир, ул. Электрозаводская,1.	

«Габаритные и установочные размеры Блока СЛ21»

«Габаритные и присоединительные размеры датчика электропроводности и температуры ДЭТ9-1Т»

Датчик электропроводности и температуры ДЭТ9-1Т	
Внутренний (центральный) электрод	1
Внешний (корпусной) электрод	2
Датчик температуры (+)	3
Датчик температуры (-)	4

«Габаритные и присоединительные размеры датчика электропроводности и температуры ДЭТ9-10Т»

Дат	чик электропроводности и температуры ДЭТ9-10Т	
	Внутренний (центральный) электрод	1
	Внешний (корпусной) электрод	2
	Датчик температуры (+)	3
	Датчик температуры (-)	4

«Габаритные и присоединительные размеры датчика электропроводности и температуры ДЭТ9-100Т»

Датчик электропроводности и температуры ДЭТ9-100Т	
Внутренний (центральный) электрод	1
Внешний (корпусной) электрод	2
Датчик температуры (+)	3
Датчик температуры (-)	4

«Схема внешних соединений Блока СЛ21»

Приложение 4

«Блок-схема Блока СЛ21»

«Допустимые положения датчиков ДЭТ9 на трубопроводе»

